Compositional Models for Object Recognition / Categorization

Joachim M. Buhmann

Institute for Computational Science, ETH Zurich

From Images to Objects (M. Minsky 1959, summer project)

- segmentation
- object recognition / categorization Supervised

How Complicated is Object Recognition?

Recogition by Key Features and Spatial Reasoning

- Constellation models

Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Tr. Comput. 22 (1973)

Lades, M., Vorbrüggen, J.C.,
 Buhmann, J.M., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Compu 42 (1993)

Fergus, R., Perona, P., Zisserman, Object Class Recognition by Unsupervised Scale-Invariant Learning. CVPR (2003)

Position Statement: My Beliefs for Propagation

1. Vision requires complex (probabilistic) models since the world contains a lot of (stochastic) structure!
2. Good representations in vision should work for a set of tasks rather than a single task!
3. Vision problems are solved by learning since the required model complexity is too high for "hand crafting"! => unsupervised learning

Requirements on Vision Representations

- Representations should
have properties like being
- ... flexible \& adaptive, modular;
- ... robust;
- ... expressive;
- ... explanatory;
- ... learnable.
- Modelling and algorithmic ingredients are ...
- growing, adaptive, nested structures \& self-assembly;
- statistical models \& inference;
- combination of global relations with local measurements;
- generative models for the "interesting" parts of the image;
- complexity control dependent on sample size.

Algorithmic Needs of Vision Systems

- Algorithms should be computationally and statistically efficient!
- Nested hypothesis classes " approximative multi-scale $\mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \cdots \subset \mathcal{H}_{k} \subset \ldots \quad$ optimization
- Hypothesis class often grows with sample size.
- Averaging of statistically equivalent hypotheses.
- probably approximately correct learning (PAC)
- extend concepts of learning.

Face Recognition with Dynamic Links

(JB, J. Lange, C. von der Malsburg)

- Dynamic Link Architecture recognized person (M. Arbib)

What are flexibleladaptive representations?

- Object variations or deformations can be captured, e.g., facial expression, object invariant articulation, perspective distortions ...

Object Categorization

- Task: Learn to classify w/o manual segmentations

- Challenge: Large intra-category variations

Dealing with many Categories: CalTech 101

Compositionality (s. Geman)

- Simple, widely reusable parts \& relations between them \Rightarrow Compositions

Information Flow for Image Interpretation

Methodology of the Compositional Approach

1. Perceptual grouping yields initial set of salient compositions \& limits representation complexity.
2. Top-down grouping forms category distinctive composition hierarchies.
3. Unsupervised learning of top-down grouping probabilities without information on compositions in training images.
4. Spatial coupling of compositions using a probabilistic shape model.

The Role of Segmentation in Object Recognition

1. Segmentation is a smart preprocessing for feature extraction.
2. Segmentation controls the recognition process.
3. It defines the metric for detecting nonaccidentalness and common cause.
4. ...?

Image Variations yield Distribution

 of SolutionImage variants are generated by resampling

Aggregated Segmentations

algorithm

test persons

Localized Feature Histograms

- Along grouped curve segments, features are extracted as local part descriptors

Edge orient Edge strength Color

- Local descriptor is Gibbs distrib. over codebook

Recognition Phase

Applying Top-Down Grouping

- Start with set Γ_{C} of salient compositions from perceptual bottom-up grouping
- Recursive grouping of compositions using
learned grouping statistics

$$
\begin{aligned}
& \mathbf{g}_{i j}^{*}=\underset{\mathbf{g}_{i j}: \mathbf{g}_{i}, \mathbf{g}_{j} \in \Gamma_{C}}{\operatorname{argmax}} \max _{c \in \mathcal{L}} P\left(c \mid \mathbf{g}_{i j}\right) \\
& \Gamma_{C} \leftarrow \Gamma_{C} \cup\left\{\mathbf{g}_{i j}^{*}\right\}-\left\{\mathbf{g}_{i}, \mathbf{g}_{j}\right\}
\end{aligned}
$$

Shape Model for Binding Compositions

Performance of Compositional Model

- Retrieval rate
$53.0 \pm 0.5 \%$ (single scale) $58.0 \pm 0.8 \%$ (multi-scale)
- Sparseness of induced image representation (fraction of selected features)

Sparseness of Curve Representation

Bayesian Net of the Architecture

Summary \& Perspectives

Learning and generalization in vision refers to the general problem of robust optimization!

There exist challenges for unsupervised learning in vision which are conceptually (much) harder than supervised learning in classification.

Fundamental problem: How is statistical complexity related to computational complexity?

We have to learn complex models with few data!

