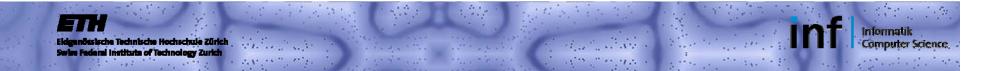


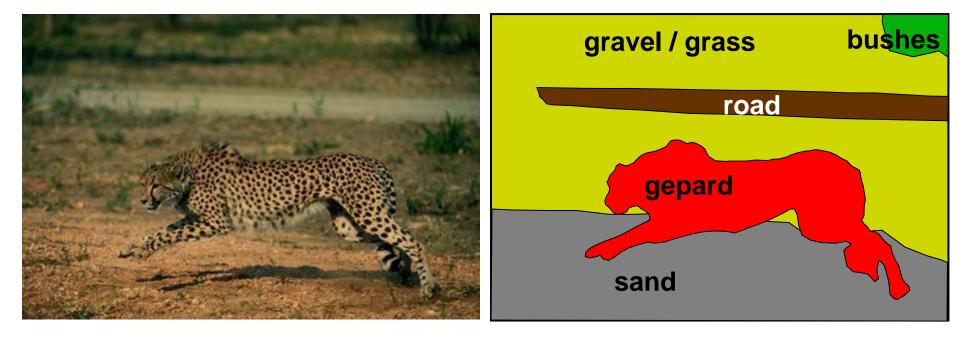
Compositional Models for Object Recognition / Categorization

Joachim M. Buhmann

Institute for Computational Science, ETH Zurich



From Images to Objects (M. Minsky 1959, summer project)



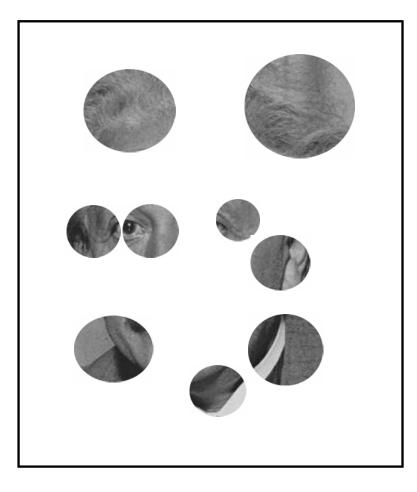
segmentation

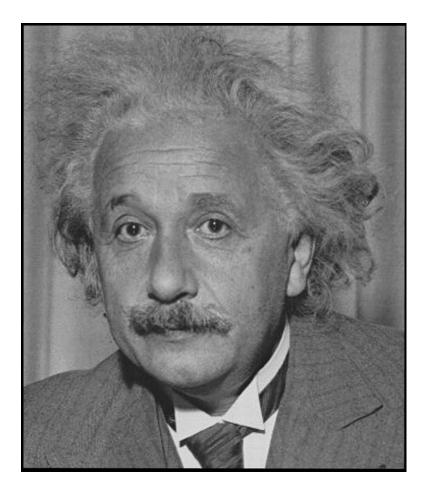
Unsupervised

object recognition / categorization Supervised

How Complicated is Object Recognition ?

Aste .



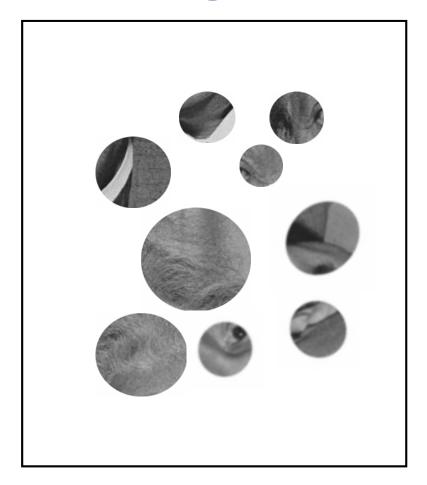


Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1.50

Informatik Computer Science

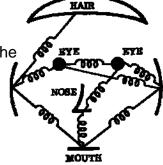
Recogition by Key Features and Spatial Reasoning



Constellation models

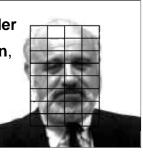
Ash .

- Fischler, M.A., Elschlager, R.A.: The representation and matching of pictorial structures. IEEE Tr. Comput. 22 (1973)
- Lades, M., Vorbrüggen, J.C., Buhmann, J.M., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Compu-42 (1993)
- Fergus, R., Perona, P., Zisserman, Object Class Recognition by Unsupervised Scale-Invariant Learning. CVPR (2003)



Informatik

Computer Science



esische Technische Hochschule Zürich

in Federal Institute of Technology Zurich

Position Statement: My Beliefs for Propagation

- Vision requires complex (probabilistic) models since the world contains a lot of (stochastic) structure!
- 2. Good representations in vision should work for a set of tasks rather than a single task!
- 3. Vision problems are solved by learning since the required model complexity is too high for "hand crafting"! => unsupervised learning

ische Technische Hochschule Zürich

al Institute of Technology Zurich

Computer Scier

Requirements on Vision Representations

- Representations should have properties like being
 - ... flexible & adaptive, modular;
 - ... robust;

ische Technische Hochschule Zürich

eral Institute of Technology Zurich

- ... expressive;
- ... explanatory;
- ... learnable.

- Modelling and algorithmicingredients are ...
 - growing, adaptive, nested structures & self-assembly;
 - statistical models & inference;
 - combination of global relations with local measurements;
 - generative models for the "interesting" parts of the image;
 - complexity control dependent on sample size.

Algorithmic Needs of Vision Systems

Algorithms should be computationally and statistically efficient!

ische Technische Hochschule Zürich and institute of Technology Zurich

- probably approximately correct learning (PAC)
- Nested hypothesis classes **approximative multi-scale** $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{H}_k \subset \ldots$
- Hypothesis class often grows with sample size.
- Averaging of statistically equivalent hypotheses.

- optimization
- extend concepts of learning.

Bayesian inference, Max. Entropy, nonparametrics

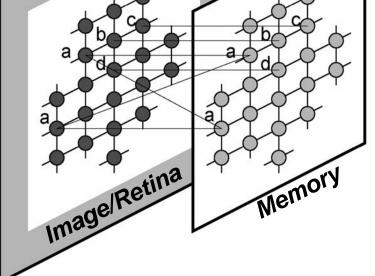
Face Recognition with Dynamic Links

(JB, J. Lange, C. von der Malsburg)

issische Technische Hochschule Zürich

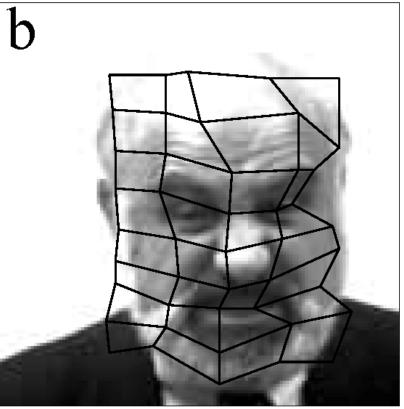
densi Institute of Technology Zurich

Dynamic Link Architecture h **A**⁽¹⁾ **A**⁽²⁾



recognized person (M. Arbib)

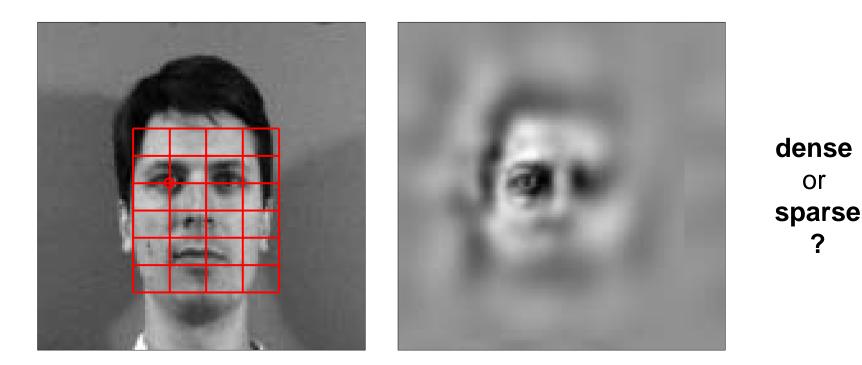
Aste .



Informatik

What are flexible/adaptive representations?

 Object variations or deformations can be captured, e.g., facial expression, object invariant articulation, perspective distortions ...



sische Technische Hochschule Zürich

Seral Institute of Technology Zurich

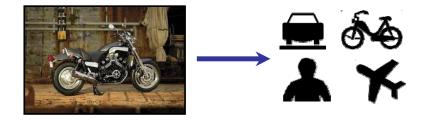
Informatik

Computer Science

AND A CONTRACT OF THE AND

Object Categorization

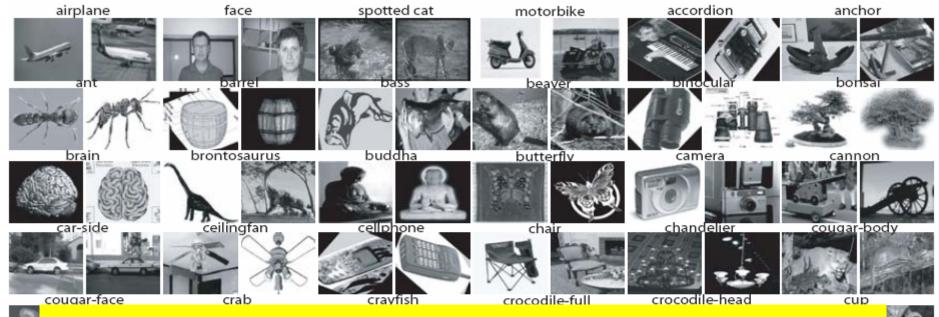
Task: Learn to classify w/o manual segmentations



Challenge: Large intra-category variations

Dealing with many Categories: CalTech 101

Aste .



- Highly challenging 101 object categories
- Large intra-category variations
- Limited variations in pose and size

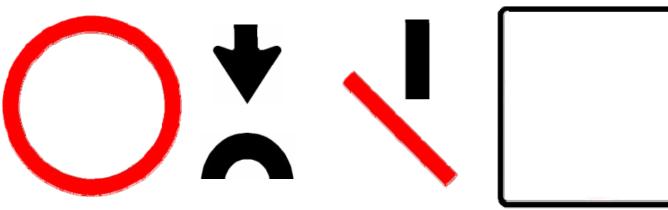
esische Technische Hochschule Zürich

deral Institute of Technology Zurich

Informatik

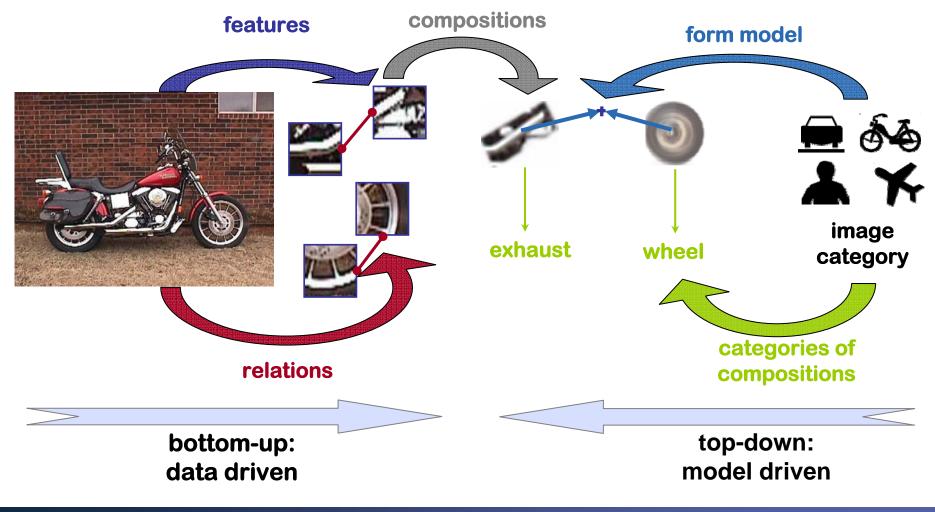
Compositionality (S. Geman)

 Simple, widely reusable parts & relations between them ⇒ Compositions



Information Flow for Image Interpretation

Aste .



iõisische Technische Hochschule Zürich

Swim Federal Institute of Technology Zurich

Informatik

Methodology of the Compositional

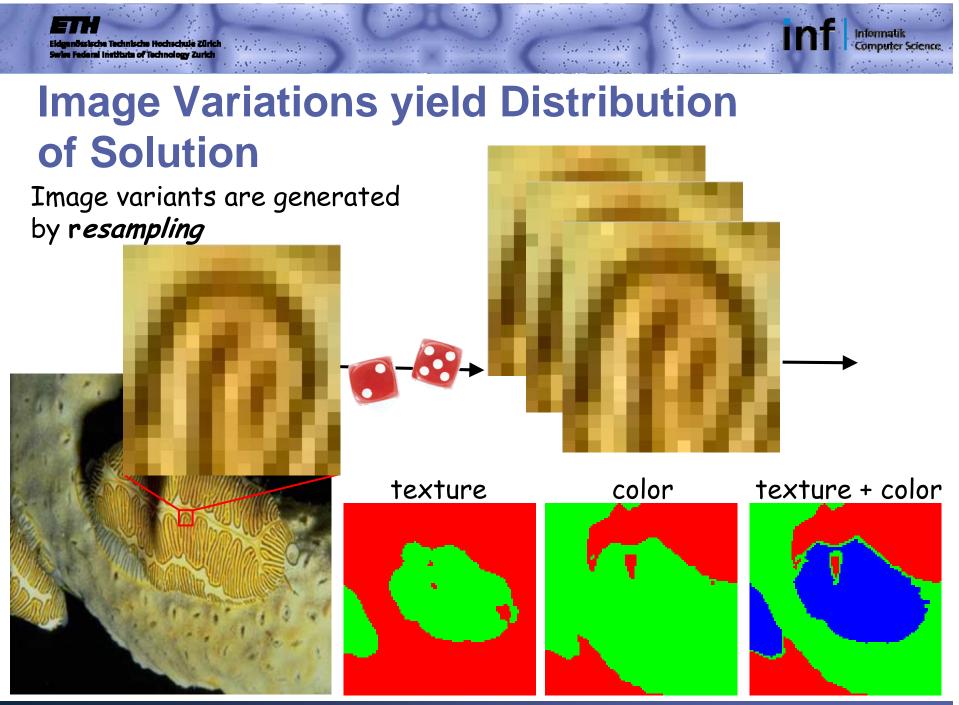
Methodology of the Compositional Approach

- Perceptual grouping yields initial set of salient compositions & limits representation complexity.
- 2. Top-down grouping forms category distinctive composition hierarchies.
- **3. Unsupervised learning** of top-down grouping probabilities without information on compositions in training images.
- 4. Spatial coupling of compositions using a probabilistic shape model.

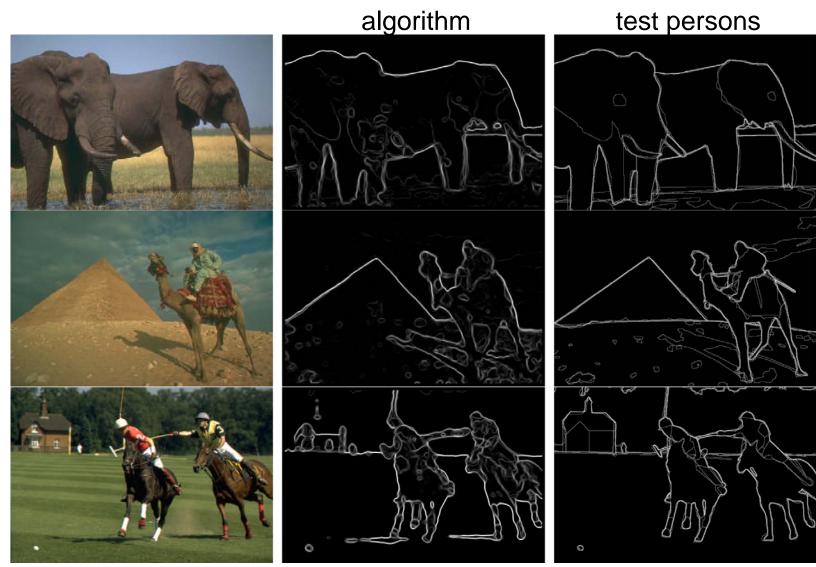
The Role of Segmentation in Object Recognition

- 1. Segmentation is a smart preprocessing for feature extraction.
- Segmentation controls the recognition process.
- 3. It defines the metric for detecting nonaccidentalness and common cause.

4. ...?

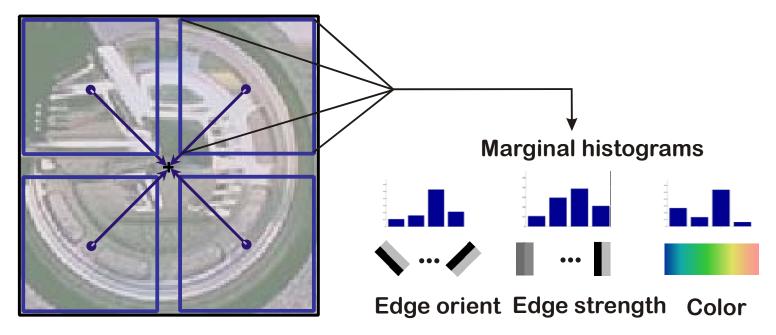


Aggregated Segmentations



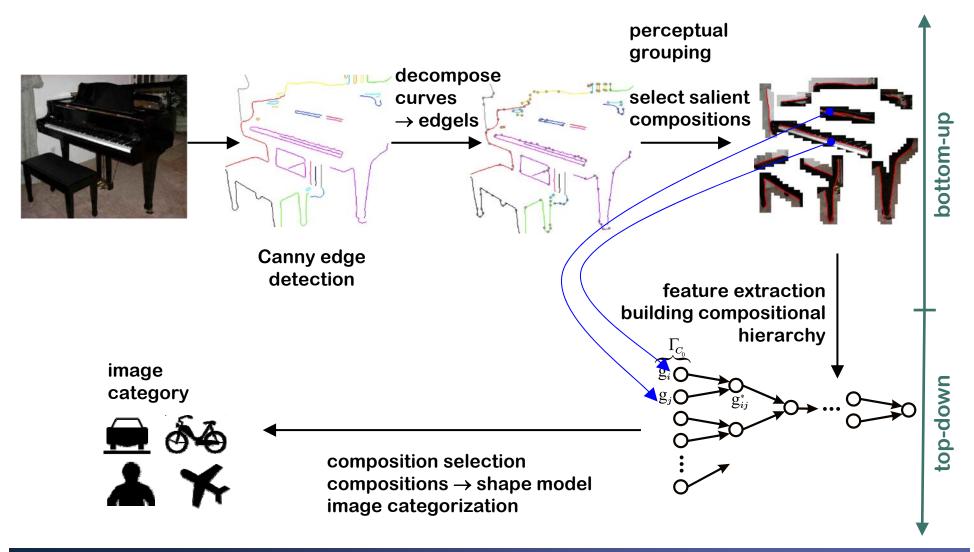
Localized Feature Histograms

 Along grouped curve segments, features are extracted as local part descriptors



Local descriptor is Gibbs distrib. over codebook

Recognition Phase

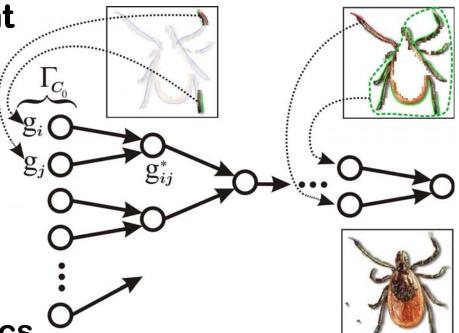


Applying Top-Down Grouping

- Start with set Γ_C of salient
 compositions from
 perceptual bottom-up
 grouping
- Recursive grouping of compositions using learned grouping statistics

$$\mathbf{g}_{ij}^* = \underset{\mathbf{g}_{ij}:\mathbf{g}_i,\mathbf{g}_j\in\Gamma_C}{\operatorname{argmax}} \max_{c\in\mathcal{L}} P(c|\mathbf{g}_{ij})$$

 $\Gamma_C \leftarrow \Gamma_C \cup \{\mathbf{g}_{ij}^*\} - \{\mathbf{g}_i, \mathbf{g}_j\}$

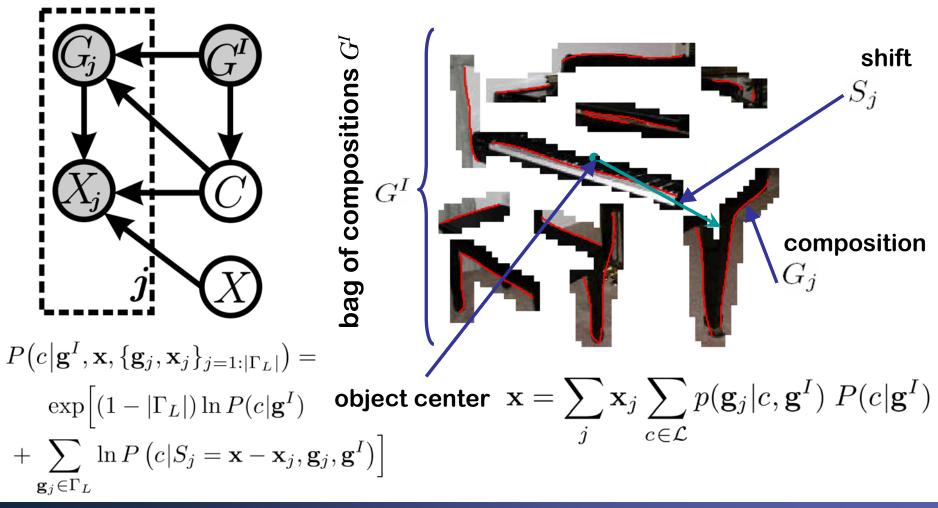


Date .

Informatik

Shape Model for Binding Compositions

Aste .



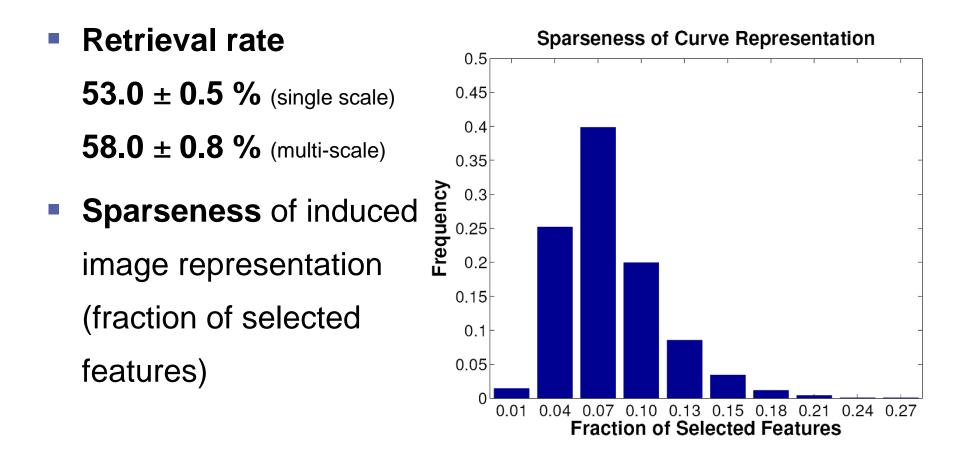
CLOR'06, 21 Sept. 2006

esische Technische Hochschule Zürich

iami Institute of Technology Zurich

Informatik

Performance of Compositional Model

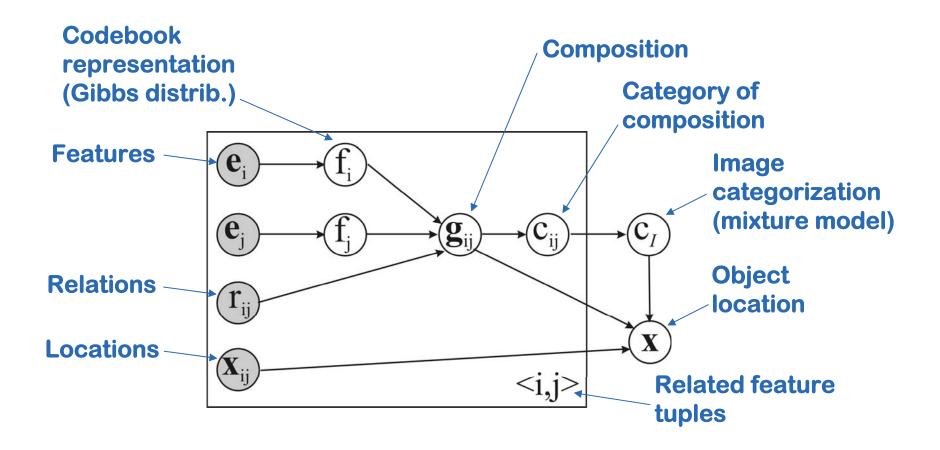


ische Technische Hochschule Zürich

eral Institute of Technology Zurich

Informatik

Bayesian Net of the Architecture



Summary & Perspectives

Learning and generalization in vision refers to the general problem of robust optimization!

There exist challenges for **unsupervised learning** in vision which are conceptually (much) harder than supervised learning in classification.

Fundamental problem: How is **statistical complexity** related to **computational complexity**?

We have to learn complex models with few data!